ESSAYS ON HEALTH ECONOMICS AND WELLBEING

Fernanda Marquez-Padilla

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
ECONOMICS
ADVISER: JANET CURRIE

MAY 2016
Abstract

The essays of this dissertation are concerned with different topics that affect individuals’ health and wellbeing.

Chapter 1 analyzes the effect of a policy which reduced the frequency of prescription renewals from 30 to 90 days on patients’ behavior and health outcomes. I find that stable hypertensive patients on the 90 day regime improved medication adherence, by reducing the number of days in which they were out of antihypertensive medication by 2.6 days (35%), and experienced no drawbacks in health outcomes. Patients appear to value being on this low-frequency regime, as they positively modified their adherence in order to remain on it. I also find evidence of positive spillovers in patients’ adherence, as clinic congestion was reduced.

Chapter 2 studies the effects on human capital accumulation of the sharp increase in violence experienced in Mexico after 2006, known as “The War on Drugs”. The upsurge in violence is expected to have direct effects on individuals’ schooling decisions, but not indirect effects, as there was no severe destruction of infrastructure. This chapter finds evidence that there were no significant effects on human capital accumulation. My analysis shows that, at most, there are very small effects on total enrollment, and that they may be driven by some students migrating. These minimal effects on human capital accumulation today should have little to no adverse effects on long-term growth outcomes in Mexico. This chapter is coauthored with Francisco Pérez-Arce and Carlos Rodríguez-Castelán.

Chapter 3 analyzes the sensitivity of self-reported measures of subjective wellbeing to country-specific factors that affect the interpretation of questions and scales without affecting wellbeing itself. I find evidence that arbitrary differences in grading systems affect the distribution and mean of wellbeing measures. Since the choice of grading systems is unlikely to be correlated with variables affecting wellbeing, the chapter concludes that grading systems affect the interpretation of wellbeing scales—probably by providing different reference points that anchor individuals’ responses. In particular, I find that countries with a
higher threshold for passing grades tend to report higher levels of happiness. This chapter is coauthored with Jorge Álvarez.
Acknowledgements

I am deeply grateful to my adviser, Janet Currie, and to Ilyana Kuziemko for their unconditional support throughout the completion of this dissertation. Its completion would have not been possible without your helpful guidance and constant mentoring. I cannot thank you enough for your generosity towards me, and am full of admiration towards you! I also thank the other members of my committee—Thomas Fujiwara, Harvey Rosen, and Tom Vogl—whose comments and suggestions have greatly enriched this dissertation. Many thanks for always being available for discussing new ideas about research and grad school and always providing invaluable advise.

I am also grateful for all the advise from faculty members during my time at Princeton University. It has been a privilege to find so many open doors over the past few years. I am especially thankful for conversations with Roland Bénabou, Anne Case, Angus Deaton, Marc Fleurbaey, Johannes Haushofer, Daniel Rees, and Dean Spears, as well as seminar participants at Princeton’s Center for Health and Wellbeing and Public Finance Working Group. Their suggestions and insightful comments have greatly improved the quality of my research during my time at Princeton.

I greatly appreciate the help from Mexico’s Social Security Institute, IMSS, who provided invaluable support for the completion of this project and outstanding data. Many thanks for wonderful conversations about this project and about grad school in general (even before it started) to Pepe Toño González Anaya. I am also extremely grateful to Regina García Cuéllar for all of her support, and to José María Rodríguez Valadez and Diana Sverdlin for their invaluable assistance to complete this project.

I would like to express my deepest gratitude to my fellow graduate students not only for their constant support and advise, but also for the friendship they have shared with me over the past few years. Many thanks to Diane Alexander, Olivier Darmouni, Nik Engbom, Gabriel López-Moctezuma, Chris Moser, Ishita Rajani, Ricardo Reyes-Heroles, Gabriel Tenorio, and Dan Zeltzer. I am fortunate to have shared this with you. A very
special thanks to *El Equipo*—Jorge Álvarez and Carlos Sanz Alonso—for many hours of struggling and learning. I couldn’t have had a better team, and it looks like we made it! Also, a special thanks to Paula Mateo for her unconditional support and friendship over these past few years.

Finally, I would like to thank my family. I want to thank my mother for all of her loving support and understanding, and for always encouraging me to pursue my dreams. To my big brother Carlos, for sharing a big part of this Princeton adventure and making it a lot more fun, and for always having my back. With endless gratitude to my father, who still inspires me for just about anything I do, and who I miss every day. I’ve been blessed with an amazing family that has always stood by my side—and has always done so with a smiling face. You are wonderful!

And last but not least, to Felix Matthys, for all his support and encouragement—and for making me a better researcher and person every day. I am so lucky to count on you and I can’t thank you enough for all your advise, conversations, and proofreading, but especially for all the love, and laughter, and kindness you share with me every day. Thank you is not enough!
To my father, in loving memory,

To my mother, with gratitude,

&

To Felix, for the chapters to come
Contents

Abstract .. iii
Acknowledgements .. v
List of Tables .. xi
List of Figures .. xiv

1 When Less is More: Can Reduced Health Monitoring Improve Medication Adherence?

1.1 Introduction ... 1
1.2 Background ... 6
 1.2.1 Hypertension .. 6
 1.2.2 IMSS and the Receta Resurtible Program 8
1.3 The Model ... 10
 1.3.1 Baseline Model ... 10
 1.3.2 Retaining the Benefits 14
1.4 Data .. 17
 1.4.1 Summary Statistics 20
 1.4.2 Measuring Adherence 22
 1.4.3 Preliminary Evidence 23
1.5 Empirical Strategy ... 23
 1.5.1 Patient-Level Variation 23
 1.5.2 Clinic-Level Variation 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.4 Effects on the Labor Market</td>
<td>84</td>
</tr>
<tr>
<td>2.6.5 Impacts on Educational Achievement: Inputs and Learning</td>
<td>86</td>
</tr>
<tr>
<td>2.7 Conclusions</td>
<td>87</td>
</tr>
<tr>
<td>2.8 Figures and Tables</td>
<td>89</td>
</tr>
<tr>
<td>3 A Grade for Happiness: the Effect of Grading Systems on Reported Life</td>
<td>103</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>103</td>
</tr>
<tr>
<td>3.2 Context: Response Styles</td>
<td>106</td>
</tr>
<tr>
<td>3.3 Data</td>
<td>109</td>
</tr>
<tr>
<td>3.4 Empirical strategy</td>
<td>110</td>
</tr>
<tr>
<td>3.5 Results</td>
<td>113</td>
</tr>
<tr>
<td>3.6 Robustness</td>
<td>115</td>
</tr>
<tr>
<td>3.7 Discussion and conclusions</td>
<td>116</td>
</tr>
<tr>
<td>3.8 Tables and Figures</td>
<td>118</td>
</tr>
<tr>
<td>A Appendix Figures and Tables</td>
<td>127</td>
</tr>
<tr>
<td>A.1 Chapter 1: Appendix Figures</td>
<td>127</td>
</tr>
<tr>
<td>A.2 Chapter 1: Appendix Tables</td>
<td>138</td>
</tr>
<tr>
<td>A.3 Chapter 1: Modeling Doctor’s Decision to Assign Patients to High or Low Frequency Regime</td>
<td>149</td>
</tr>
<tr>
<td>A.4 Chapter 2: Appendix Tables</td>
<td>151</td>
</tr>
<tr>
<td>A.5 Chapter 3: Appendix Tables</td>
<td>162</td>
</tr>
<tr>
<td>Bibliography</td>
<td>166</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Patient characteristics by type of prescription filled. August, 2013 50
1.2 Effect of automatic refill prescriptions on medication adherence 51
1.3 Effect of automatic refill prescriptions on medication adherence controlling for
 clinic congestion . 52
1.4 Effect of automatic refill prescriptions on treatment gap at the clinic level . . 53
1.5 Patients improve adherence to remain on the low-monitoring regime 54
1.6 Patients improve adherence to remain on the low-monitoring regime more in
 highly congested clinics . 55
1.7 Effect of reducing health monitoring on clinic congestion 56
1.8 Spillovers in Medication Adherence for Non-Stable Patients 57
1.9 Effect of automatic refill prescriptions on treatment gap by diabetes status . 58
1.10 Effect of automatic refill prescriptions on health outcomes 59
1.11 Effect of automatic refill prescriptions on therapeutic treatment 60
2.1 The impact of homicide rates on the number of enrolled students 93
2.2 The impact of homicide rates on the number of enrolled students, controlling
 for public expenditures . 94
2.3 The impact of homicide rates enrollment rates using Census Data 95
2.4 The Impact of Violence on Enrollment Rates by Gender Using Census Data 96
2.5 The impact of homicide rates on enrollment rates using the ENOE 97
2.6 The Impact of Violence on the Number of Residents in Municipalities 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.14 The impact of homicide rates on the number of enrolled students</td>
<td>156</td>
</tr>
<tr>
<td>A.15 The impact of homicide rates on enrollment rates, with municipality-level controls</td>
<td>157</td>
</tr>
<tr>
<td>A.16 Grading scales by country</td>
<td>162</td>
</tr>
<tr>
<td>A.17 Relationship between life satisfaction and 10-point scale grading systems</td>
<td>165</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Clinics issuing automatic refill prescriptions 44
1.2 Prescriptions issued by IMSS .. 45
1.3 Mean Treatment Gap by Type of Patient 46
1.4 Event study graph: Event is date when removed from 90-day regime 47
1.5 Effect of the n^{th} automatic refill prescription. Regression coefficients 48
1.6 Effect of clinics’ adoption of *Receta Resurtible* on treatment gap 49

2.1 Total Number of Homicides. Monthly Data, 1990-2010 89
2.2 Homicide Rate Evolution. Selected States 90
2.3 Mean Homicide Rate for Selected Municipalities 91
2.4 Total Enrollment in Upper-Secondary School 92

3.1 Histogram: Pass/Fail Threshold ... 118
3.2 Life satisfaction is positively correlated with income 119
3.3 A higher Pass/Fail threshold is associated with higher life satisfaction 120
3.4 Relationship between Income and Residual Life Satisfaction 121
3.5 Relationship between Income and Imputed Life Satisfaction 122

A.1 Getting a prescription before *Receta Resurtible* 127
A.2 Getting a prescription after *Receta Resurtible* 128
A.3 Clinics issuing automatic refill prescriptions on January 2012 129
A.4 Clinics issuing automatic refill prescriptions on March 2014 129
A.5 Distribution of treatment gap for eligible and non-eligible patients 130
A.6 Event study graph. Effect of patient’s first automatic refill prescription . . . 131
A.7 Predicted probabilities of receiving automatic refill prescription 132
A.8 Share of automatic refill prescriptions issued at the clinic level (5%) 133
A.9 Share of automatic refill prescriptions issued at the clinic level (3%) 134
A.10 Event study graph. Clinics’ share of automatic refill prescriptions 135
A.11 Effect of clinics’ adoption of the Receta Resurtible program (5%) 136
A.12 Effect of clinics’ adoption of the Receta Resurtible program (3%) 137
Chapter 1

When Less is More: Can Reduced Health Monitoring Improve Medication Adherence?

1.1 Introduction

An active area of health policy focuses on allocating scarce medical resources as efficiently as possible. Much debate has revolved around some prominent policies that seek to reallocate inputs for the production of health, such as reducing the frequency of certain procedures (i.e., consider the ongoing debate about the recommended frequency of mammograms) or allowing nurse practitioners to prescribe controlled medications. The value of these policies lies in the extent to which they can reduce the costs of providing healthcare, while not generating additional costs in terms of patients’ health or general wellbeing.

These types of policies are particularly relevant for developing countries, where resources for providing healthcare are limited and health costs are increasing. As countries develop, the burden of life-long chronic conditions increases. During this epidemiological transition, the prevalence of non-communicable chronic diseases increases relative to that of communicable
diseases. Low- and middle-income countries face new challenges for providing healthcare, and for allocating scarce medical resources as efficiently as possible.

Chronic conditions require constant health monitoring. However, there exists a trade-off in deciding the frequency with which this must be done. Frequent monitoring by healthcare providers may be favorable for managing chronic conditions, but it is costly in terms of resources such as clinic space and physician time. The costs of high monitoring may outweigh the benefits in certain stances.

To shed light on this trade-off, I study a recent Mexican policy that reduced the frequency of monitoring for stable hypertensive patients—patients with high blood pressure. It intended to eliminate arguably unnecessary appointments for patients whose condition was under control. This was done by allowing physicians to issue multiple refillable prescriptions, thus reducing the number of appointments necessary from one every month to one every three months.

The original motivation for the policy was to liberate resources for the provision of healthcare and reduce crowding in clinics. However, reducing the number of appointments could have either negative or positive effects on the affected patients. The reduction in care could make it more difficult for some patients to manage their condition. But the policy also lowered transaction costs of accessing treatment, which could help improve medication adherence. Moreover, if patients value the convenience of having to meet a doctor less frequently, it gave patients an incentive to improve adherence in order to remain on the low-frequency regime, and reduce the transactions costs associated with accessing medical care. In this sense, reducing hypertension monitoring could have unintended benefits with respect to medication adherence.

Finally, clinic congestion is reduced as the frequency of monitoring for stable patients declines. This could lead to positive spillovers for patients who were not directly affected by the policy (i.e., whose health monitoring frequency remained unchanged). I explore whether
medication adherence for patients that did not receive automatic-refill prescriptions improved as clinics became less crowded.

While the lessons learned from the IMSS reform—that reducing health monitoring might positively affect patients’ health behaviors and that some patients view this as a benefit for which they would actually improve the management of their disease in order to retain it—may apply to different dimensions of patient behavior, medication adherence is of interest in its own right.

Medication adherence is defined as patients’ conformance with their provider’s recommendations of timing, dosage, and frequency of medication-taking. Improving medication adherence could have substantial health benefits, in addition to important reductions in the costs associated with hypertension and other chronic conditions which require life-long therapeutic treatment. The costs associated with medication non-adherence—which include poor health outcomes and increased health care costs—are larger as the burden of chronic diseases increases \(^{(\text{WHO} \ (2003))}\).

While there has been increasing interest in medication adherence in developed countries—where the prevalence of chronic conditions has been historically higher—, relatively few studies (such as \text{Case, Le Roux and Menendez (2004)} \text{ and } \text{Tarozzi et al. (2009)}) have addressed the phenomenon of medication non-adherence in the context of developing and middle-income countries. Understanding medication non-adherence in this context particularly relevant for middle-income countries, such as Mexico, which have experienced epidemiological transition towards chronic-degenerative diseases in recent years. From a global perspective, low- and middle-income countries that experience an increase in chronic non-communicable diseases such as hypertension or diabetes, or where other chronic lifelong communicable diseases—namely HIV/AIDS—has high prevalence could benefit from implementing policies to promote better medication adherence, as these have been found to be cost-effective, at least in the context of developed countries (\text{Roebuck et al. (2011)}, \text{Sokol et al. (2005)}).
I find that reducing the frequency of health monitoring significantly improves medication adherence. Receiving a prescription that covers treatment for 90 days (as opposed to 30) reduces the number of days a patient is out of medication by 2.6 days, a reduction of 35% with respect to the number of days patients were—on average—out of medication before the beginning of the program. The magnitude of the effect compares favorably to other interventions aimed directly at improving medication adherence. A meta-analysis of interventions to improve medication adherence in the US finds increases in adherence of only between 4 and 11% (Peterson, Takiya and Finley (2003)).

As further evidence of the role of transaction costs, I show that patients treated at the most congested clinics show a larger effect of the policy on their prescription filling behavior. Additionally, I observe positive spillovers in all patients’ adherence from the general reduction in transaction costs of filling prescriptions as clinics’ congestion falls. I also find evidence that patients value being on the low-frequency regime, as they improve adherence not only in response to the reduction in transaction costs when they may receive automatic-refill prescriptions, but also in order to remain on the 90-day regime.

My results show that the policy has a had a positive effect on clinic congestion, as originally intended. Additionally, patients that experience a reduction in health monitoring remain stable, and their diseases appears to remain under control. Patients’ current health as measured by blood pressure does not increase. It may additionally be argued that the improvements in medication adherence will result in improved long-term health outcomes.

My research uses a specific change in policy with particular eligibility criteria which provides a clean identification strategy. I use the Receta Resurtible program, implemented by the Mexican Social Security Institute, IMSS (the largest social security institution in Latin America, covering around half of the Mexican population), to study the effect of prescription duration on medication adherence. In particular, drug prescriptions for patients suffering from certain chronic conditions went from covering 30 days of treatment to covering 90 days. Patients in the new regime receive three “automatic-refill” prescriptions (each covering 30
days of treatment), where one is filled at the time of the doctor’s appointment, and two may be refilled in the following months without having to see a physician again.

High quality administrative longitudinal data for low- and middle-income countries is rare. My research uses a novel administrative database from IMSS set up in a panel structure on patients’ prescription fillings. It covers a large segment of the population as it includes the universe of hypertensive patients receiving treatment from this institution (over 4 million patients), the single largest public healthcare provider in Mexico. I directly observe every prescription filling at IMSS pharmacies.

For my empirical strategy, I use econometric models with patient fixed effects in order to assess the effect of reducing health monitoring on a variety of patient level outcomes. I additionally exploit the variation in the timing of clinics’ adoption of the policy to control for potential endogeneity issues at the patient level. This also allows me to analyze whether there have been spillovers at the clinic level from reduced congestion.

My paper contributes to the literature by being one of the few which analyzes medication adherence in the context of less developed countries. It benefits from using high quality administrative panel data, covering the prescription filling history of over four million patients. I am able to exploit a specific change in policy which gives me a clean identification strategy. Additionally, given the unique policy design, I am able to explore whether patients improve adherence because of a decrease in transaction costs of accessing treatment or because of increased patient effort in order to remain on the low-cost regime (or both).

My paper speaks to the literature on the determinants of non-adherence. Although no consensus exists regarding how to improve patients’ adherence, some strategies such as cost reduction (Atella et al. (2006)), health education interventions (Morisky et al. (1983), Lee, Grace and Taylor (2006)), and patient reminders (Smith et al. (2008), Piette, Weinberger and McPhee (2000)) appear to be the most effective. Improving patients’ knowledge of the disease and medications, as well as of the long-term risks of hypertension appear to be key for improving adherence (Gwadry-Sridhar et al. (2013)). Volpp et al. (2008) found
a daily lottery-based financial incentive to be a useful tool to improve adherence. All of
the above mentioned studied were conducted in developed countries—with the exception of
Atella et al. (2006) which looks at the case of Italy, and Gwadry-Sridhar et al. (2013) (which
is a systematic review of the literature), all studies focus on the United States.

Reducing the cost of medications appears to have a significant effect on patient com-
pliance, whether this reduction is monetary or nonmonetary. Changes in the co-payment
structure appear to have a strong effect on the average compliance of previously low com-
pliant patients (Atella et al. (2006)). Nonmonetary factors measured as travel time are also
found to play an important role in determining the demand for medical care (Acton (1975)).

The rest of the paper is organized as follows. Section 1.2 presents some background in-
formation on the Mexican healthcare system and IMSS, and the Receta Resurtible program.
Section 1.3 presents a theoretical model about transaction costs and adherence which yields
some predictions which I will later test in the data. Section 1.4 describes the novel data
that I use and presents some summary statistics. Section 1.5 discusses my empirical strat-
egy, and Section 1.6 presents my main findings regarding the effects of reduced monitoring
on medication adherence, health outcomes, clinic congestion, and the existence of positive
spillovers, as well as some robustness checks. Section 1.7 concludes.

1.2 Background

1.2.1 Hypertension

This paper takes a disease specific approach, focusing on chronic hypertension for a series
of reasons: (i) good medication adherence has the potential to improve health outcomes
for chronic diseases; (ii) hypertensive patients are easily identifiable from their prescription
fillings; (iii) health measures relevant to hypertensive patients are consistently and system-
atically measured; and (iv) it is highly relevant within the Mexican health context.
Hypertension is a chronic medical condition where the blood pressure in the arteries is elevated, putting strain on the heart. Uncontrolled high blood pressure can lead to heart attacks, strokes, aneurysms, and is associated with a shortened life expectancy. Hypertension is a chronic disease which generally implies life-long therapy.

In recent years, Mexico has experienced an important increase in the share of deaths occurring from non-communicable, chronic conditions, which currently represent the most serious public health issues in the country. In 2011, diabetes mellitus, cerebrovascular diseases (i.e., strokes), and hypertensive diseases—all non-communicable diseases—accounted for 29.2% of total deaths (IMSS (2012)). Approximately one out of every three Mexicans over 20 in Mexico is hypertensive (ENSANUT (2012)).

Antihypertensive drugs have been found to have a major impact on health, and to be an extremely effective and highly cost-efficient treatment. Cutler et al. (2007) estimate that antihypertensive medication has a benefit-to-cost ratio of 6:1 (women) to 10:1 (men), for example. Additionally, the treatment for hypertensive patients is well defined and effective. Non-adherence to cardioprotective medications (β-blockers, statins, and/or angiotensin-converting enzyme inhibitors) was associated with a 10% to 40% relative increase in risk of cardiovascular hospitalizations and a 50% to 80% relative increase in risk of mortality (Ho, Bryson and Rumsfeld (2009)).

Costs associated with hypertensive diseases have been estimated to account for at least 14% of the total health budget in Mexico (Villarreal-Ríos et al. (2002)). Additionally, there exists no consensus regarding the optimal frequency of health monitoring for hypertension (Guthmann et al. (2005)).

1 In contrast, in 1976, these same conditions accounted to less than 11% of total deaths. Communicable diseases such as pneumonia, perinatal health problems, and intestinal infectious diseases accounted for around 36.5% of total deaths in 1976, while they represented less than 8% of total deaths by 2011.

2 It mainly consists of administering β-blockers, angiotensin-converting enzyme (ACE) inhibitors, or diuretics.

3 In the United States hypertension affects 43-50 million adults. About 50% of those who have been diagnosed are treated, and only 51% of the treated population adheres to the prescribed treatment. Low adherence has been identified as the primary cause of unsatisfactory blood pressure control, and only 30% of those treated achieved the expected blood pressure (WHO (2003)).
1.2.2 IMSS and the *Receta Resurtible* Program

IMSS is one of the largest government institutions in Mexico and the main provider of public health services. It has a mandatory coverage of all private-sector employees, broadly corresponding to individuals in formal jobs and their families.\(^4\) Medical benefits from IMSS are available to approximately 58 million Mexicans (IMSS (2012)).

As a public health provider, IMSS delivers a number of medical services. Services are provided to formal workers (insured individuals) and other beneficiaries (family members also covered by IMSS) free of charge.\(^5\) Medical prescriptions are issued by attending physicians and are then filled at IMSS pharmacies free of charge.\(^6\)

Most outpatients receive medical care in Family Medicine Units (*Unidades de Medicina Familiar*, UMF), which represent the most basic level of care provided by IMSS. These are often referred to as primary care centers, and there are 1,118 UMF’s across the country. Finally, IMSS administers 1,347 pharmacies nationwide where drug prescriptions issued by IMSS may be filled free of charge by patients.\(^7\) Availability of medications at IMSS compares favorably to that of other public healthcare providers in the country, as 86% of patients reported to have completely filled their prescription at the place where they received outpatient care (ENSANUT (2012)).

Although almost 80% of patients describe the healthcare services provided by IMSS as ‘good’ or ‘very good’, waiting times are often cited as a problem. In particular, attending a doctor’s appointment may be a time consuming activity, as the mean waiting time for outpatient care at IMSS is 75 minutes, a high number relative to other public and private healthcare providers in Mexico (ENSANUT (2012)).

\(^4\) The other main public health provider in Mexico is *Seguro Popular*, which provides healthcare to individuals not covered by IMSS, thus providing access to health services to individuals working in informal sectors of the economy.

\(^5\) Benefits include general healthcare, maternity, and specialist care, surgery, hospitalization or care in a convalescent home, medicine, laboratory services, and dental care.

\(^6\) IMSS doctors are salaried workers who earn a monthly wage, and receive no additional benefits depending on the number of patients they receive or their health outcomes, or on the type of treatment prescribed.

\(^7\) All pharmacies are located at an IMSS healthcare unit. A pharmacy can be found at every UMF.